The Deepest Uncertainty When a hypothesis is neither true nor false

The Deepest Uncertainty When a hypothesis is neither true nor false

1.सबसे गहरी अनिश्चितता जब एक परिकल्पना न तो सत्य है और न ही असत्य(The Deepest Uncertainty When a hypothesis is neither true nor false)-

जॉर्ज कैंटर की मृत्यु 1918 में जर्मनी के हाले में एक अभयारण्य में हुई थी। एक पूर्व-प्रख्यात गणितज्ञ, उन्होंने 1870 के दशक में अनंत संख्याओं के सिद्धांत की नींव रखी थी। उस समय, उनके विचारों को यूरोप के प्रमुख गणितज्ञों से शत्रुतापूर्ण विरोध प्राप्त हुआ, उनमें से प्रमुख, लियोपोल्ड क्रोनकर, एक बार कैंटर के शिक्षक थे। अवसाद के अपने पहले ज्ञात युद्ध में, कैंटर ने स्वीडिश गणितज्ञ गोस्टा मितग-लेफ़लर को 52 पत्र लिखे, जिनमें से प्रत्येक ने क्रोनकर का उल्लेख किया।
लेकिन यह क्रोनर द्वारा सिर्फ अस्वीकृति नहीं थी जिसने कैंटर को अवसाद में धकेल दिया; यह 1878 में तैयार किए गए एक विशेष गणितीय अनुमान को साबित करने में उनकी असमर्थता थी, और यह सच था कि कॉन्टिनम हाइपोथीसिस कहा जाता है। लेकिन अगर वह खुद को दोषी ठहराता है, तो उसने ऐसा किया। अनुमान पर बहस गहन रूप से अनिश्चित है: 1940 में कर्ट गोडेल ने यह साबित कर दिया कि कॉन्टिनम हाइपोथीसिस को अस्वीकार नहीं किया जा सकता है (तकनीकी रूप से, परिकल्पना की उपेक्षा साबित नहीं की जा सकती है), और 1963 में पॉल कोहेन ने साबित कर दिया कि इसे साबित नहीं किया जा सकता है। गरीब कैंटर ने खुद को चाटने के लिए काफी मस्तूल चुना था।
अवसाद के अपने पहले ज्ञात युद्ध में, कैंटर ने स्वीडिश गणितज्ञ गोस्टा मितग-लेफ़लर को 52 पत्र लिखे, जिनमें से प्रत्येक ने क्रोनकर का उल्लेख किया।
हालांकि, यह कैसे संभव है, क्योंकि किसी चीज के लिए न तो साबित करने योग्य है और न ही अस्वीकार्य है? एक सटीक उत्तर में कई पृष्ठ परिभाषाएँ, नींबू और सबूत होंगे। लेकिन हम इस बात को महसूस कर सकते हैं कि इस अजीबोगरीब सच्चाई की स्थिति में और भी तेजी से शामिल है।

2.कैंटर का कॉन्टिनम हाइपोथीसिस(Cantor's Continuum Hypothesis)-

कैंटर का कॉन्टिनम हाइपोथीसिस अनंत के आकार के बारे में एक बयान है। यह देखने के लिए कि अनंत का आकार एक से अधिक कैसे हो सकता है, आइए सबसे पहले खुद से पूछें कि सामान्य संख्या के आकार की तुलना कैसे की जाती है। एक छोटे जंगल में बकरियों के संग्रह पर विचार करें। यदि छह बकरियां और छह पेड़ हैं, और प्रत्येक बकरी को एक अलग पेड़ से जोड़ा जाता है, तो प्रत्येक बकरी और पेड़ को विशिष्ट रूप से जोड़ा जाता है। इस जोड़ी को बकरियों और पेड़ों के बीच एक "पत्राचार" कहा जाता है। यदि, हालांकि, छह बकरियां और आठ पेड़ हैं, तो हम इस तरह के पत्राचार को स्थापित करने में सक्षम नहीं होंगे: चाहे हम कितनी भी कोशिश कर लें, बकरी मुक्त दो पेड़ होंगे।
छह बकरियों की तुलना में बहुत बड़े संग्रह के आकार की तुलना करने के लिए पत्राचार का उपयोग किया जा सकता है - जिसमें अनंत संग्रह शामिल हैं। नियम यह है कि, यदि एक पत्राचार दो संग्रह के बीच मौजूद है, तो उनका आकार समान है। यदि नहीं, तो एक बड़ा होना चाहिए। उदाहरण के लिए, सभी प्राकृतिक संख्याओं के संग्रह {1,2,3,4,…} में पाँच {5,10,15,20,…} के सभी गुणकों का संग्रह है। पहली नज़र में, यह इंगित करता है कि प्राकृतिक संख्याओं का संग्रह पांच के गुणकों के संग्रह से बड़ा है। लेकिन वास्तव में वे आकार में समान होते हैं: प्रत्येक प्राकृतिक संख्या को विशिष्ट रूप से पांच के साथ जोड़ा जा सकता है जैसे कि संग्रह में कोई भी संख्या अप्राप्त नहीं है। इस तरह के एक पत्राचार में नंबर 1 को 5, 2 के साथ 10 और इसी तरह जोड़ा जाएगा।
यदि हम प्राकृतिक संख्याओं के साथ "वास्तविक" संख्याओं की तुलना करने के लिए इस अभ्यास को दोहराते हैं (इनमें संपूर्ण संख्याएँ, भिन्न, दशमलव और अपरिमेय संख्याएँ शामिल हैं), तो हम पाते हैं कि वास्तविक संख्याओं का संग्रह बड़ा है। दूसरे शब्दों में, यह साबित किया जा सकता है कि दो संग्रहों के बीच एक पत्राचार मौजूद नहीं है।
कॉन्टिनम हाइपोथीसिस में कहा गया है कि प्राकृतिक संख्याओं के संग्रह से बड़ा वास्तविक संख्याओं का कोई अनंत संग्रह नहीं है, लेकिन सभी वास्तविक संख्याओं के संग्रह की तुलना में छोटा है। कैंटर आश्वस्त था, लेकिन कभी भी इसे साबित नहीं कर सका।
यह देखने के लिए कि गणित के प्रमाण में क्या है, इस पर विचार करके शुरुआत करें। गणित के परिणाम स्वयंसिद्ध और तर्क का उपयोग करके सिद्ध होते हैं। Axioms आदिम गणितीय अवधारणाओं के बारे में कथन हैं जो इतने सहज रूप से स्पष्ट हैं कि कोई उनकी वैधता पर सवाल नहीं उठाता है। एक स्वयंसिद्ध का एक उदाहरण है, किसी भी प्राकृतिक संख्या (जो एक आदिम अवधारणा है) को देखते हुए, एक बड़ी प्राकृतिक संख्या मौजूद है। यह स्वयं स्पष्ट है, और गंभीर संदेह में नहीं। तर्क का उपयोग तब स्वयंसिद्ध परिणामों से परिष्कृत परिणाम प्राप्त करने के लिए किया जाता है। आखिरकार, हम मॉडल का निर्माण करने में सक्षम हैं, जो गणितीय संरचनाएं हैं जो स्वयंसिद्ध संग्रह को संतुष्ट करती हैं।
तर्क के उपयोग के माध्यम से, स्वयंसिद्ध रूप से स्वयंसिद्ध सिद्ध किया गया कोई भी कथन किसी भी मॉडल में व्याख्या करने पर सही होगा जो उन स्वयंसिद्धों को सत्य बनाता है।
यदि छह बकरियां और आठ पेड़ हैं, तो हम इस तरह के पत्राचार को स्थापित करने में सक्षम नहीं होंगे: कोई फर्क नहीं पड़ता कि हम कितना प्रयास करते हैं, बकरी मुक्त दो पेड़ होंगे।
यह एक उल्लेखनीय तथ्य है कि सभी गणित एक संग्रह की आदिम अवधारणा से संबंधित स्वयंसिद्धों का उपयोग करके प्राप्त किए जा सकते हैं (आमतौर पर गणित में "सेट" कहा जाता है)। गणित की शाखा जो इस काम को करती है, उसे सेट सिद्धांत के रूप में जाना जाता है। पहले सेट की भाषा (जो हमेशा किया जा सकता है) में कथन की व्याख्या करके, पहले गणितीय तर्क को साबित किया जा सकता है, और फिर सेट के स्वयंसिद्धों पर तर्क लागू किया जा सकता है। कुछ सेट स्वयंसिद्धों में शामिल है कि हम एक नए सेट बनाने के लिए एक सेट के विशेष तत्वों को एक साथ इकट्ठा कर सकते हैं; और वहाँ एक अनंत सेट मौजूद है।
कर्ट गोडेल ने एक मॉडल का वर्णन किया जो सेट सिद्धांत के स्वयंसिद्धों को संतुष्ट करता है, जो एक अनंत सेट के अस्तित्व के लिए अनुमति नहीं देता है जिसका आकार प्राकृतिक संख्याओं और वास्तविक संख्याओं के बीच है। इसने कॉन्टिनम हाइपोथीसिस को अव्यवस्थित होने से रोक दिया। उल्लेखनीय रूप से, कुछ साल बाद, पॉल कोहेन सेट सिद्धांत के एक अन्य मॉडल को खोजने में सफल रहे, जो सेट सिद्धांत के स्वयंसिद्धों को भी संतुष्ट करता है, जो इस तरह के एक सेट के अस्तित्व के लिए करता है। इसने कॉन्टिनम हाइपोथीसिस को साबित होने से रोक दिया।

3. कॉन्टिनम हाइपोथीसिस का प्रमाण होने के लिए दूसरा तरीका (Another way to prove the evidence of continental hypothyroidism)-

दूसरा तरीका रखो: कॉन्टिनम हाइपोथीसिस का प्रमाण होने के लिए, इसे सेट सिद्धांत के सभी मॉडलों में सही होना होगा, जो यह नहीं है। इसी तरह, हाइपोथीसिस को नापसंद करने के लिए, इसे सेट सिद्धांत के सभी मॉडलों में अमान्य रहना होगा, जो कि यह भी नहीं है।
यह संभव है कि नया, जैसा कि अभी तक अज्ञात है, स्वयंसिद्ध हाइपोथीसिस को सही या गलत दिखाएगा। उदाहरण के लिए, मौजूदा लोगों से सेट बनाने के लिए एक नया तरीका प्रदान करने वाला एक स्वयंसिद्ध शब्द हमें हाइपोथीसिस को नापसंद करने वाले अज्ञात अज्ञात सेट बनाने की क्षमता प्रदान कर सकता है। ऐसे कई स्वयंसिद्ध हैं, जिन्हें आमतौर पर "बड़े कार्डिनल स्वयंसिद्ध" के रूप में जाना जाता है। ये स्वयंसिद्ध आधुनिक सेट सिद्धांत में अनुसंधान की एक सक्रिय शाखा बनाते हैं, लेकिन कोई कठिन निष्कर्ष नहीं निकला है।
कॉन्टिनम हाइपोथीसिस के आसपास की अनिश्चितता अद्वितीय और महत्वपूर्ण है क्योंकि यह गणित की संरचना के भीतर गहरी निहित है। यह विज्ञान के दर्शन और स्वयंसिद्ध पद्धति के विषय में गहन मुद्दों को उठाता है। ब्रह्मांड का वर्णन करने में गणित को "अनुचित रूप से प्रभावी" दिखाया गया है। इसलिए यह आश्चर्य करना स्वाभाविक है कि क्या ब्रह्मांड में काम करने के तरीके के बारे में गणित में निहित अनिश्चितताएं अंतर्निहित अनिश्चितताओं में बदल जाती हैं। क्या ब्रह्माण्ड के मूल नियमों में मूलभूत रूप से अनुकूलता है? क्या यह संभव है कि अलग-अलग ब्रह्मांड हैं जहां गणितीय तथ्यों को अलग तरीके से प्रस्तुत किया गया है? जब तक कॉन्टिनम की परिकल्पना हल नहीं हो जाती है, तब तक किसी को यह निष्कर्ष निकालने के लिए लुभाया जा सकता है कि वहाँ हैं

0 Comments: