Geometric Proof of Difference of Squares
Geometric Proof of Difference of Squares
1.ज्यामितीय निरूपण का परिचय (Introduction of Geometric Representation)-
ज्यामितीय रचनाओं का अध्ययन कुछ स्वयं सिद्ध कथनों तथा अवधारणाओं के आधार पर किया जाता है जहाँ व्यक्ति का खोज करने का गुण सदैव महत्त्वपूर्ण रहता है तथा गणनाएं सदैव सहायक की भूमिका में उपस्थित रहती हैं। इस विधि को संश्लेषिक विधि (Synthetic Approach) कहते हैं ।ऐसी स्थिति में कभी-कभी समस्याओं को हल करना कठिन हो जाता है अतः सभी ज्यामितीय समस्याओं को एक समान रूप से हल करने के लिए यह आवश्यक है कि व्यक्ति के खोज करने वाले गुण के प्रभाव को नगण्य बना दिया जाए तथा गणनाओं को मुख्य आधार प्रदान कर दिया जाए। ज्यामितीय निरूपण इस प्रकार के कार्य में अत्यन्त सहायक सिद्ध हुआ है। इस पद्धति में हम रेखाचित्र द्वारा संख्याओं को निरूपित करते हैं एवं ज्यामितीय चित्रों का अध्ययन करते हैं अतः इसे ज्यामितीय निरूपण कहते हैं। चूँकि यह पद्धति ज्यामिति के चित्रों के विश्लेषण पर आधारित होती है अतः इसे वैश्लेषिक ज्यामिति (Analytic Geometry) भी कहते हैं। ज्यामिति गणित विज्ञान की एक शाखा है जिसमें रेखाचित्रों, रेखाओं, रेखाखण्डों, तलों तथा ठोस पिण्डों के गुणों और उनके आकार, विस्तार एवं स्थिति का अध्ययन किया जाता है।
प्राचीनकाल में इस गणित में भूमिमापन का कार्य किया जाता था। परन्तु वर्तमान समय में प्रत्येक क्षेत्र में इसका प्रयोग होता। प्लेटो ने अपने घर के दरवाजे पर पर लिख रखा था कि जो व्यक्ति ज्यामिति नहीं जानता वह यहाँ प्रवेश नहीं पा सकता है। ज्यामिति के अध्ययन के लिए अच्छे स्तर की तर्क एवं सोचने की शक्ति की आ आवश्यकता होती है। प्लेटो ने यही सोचकर शायद यह नियम अपनाया होगा। आधुनिक युग में यूक्लिड की प्रसिद्ध पुस्तक "The Elements" ज्यामितिशास्त्र का स्रोत माना जाता है। भारत में यज्ञ करने के लिए ज्यामिति का उपयोग किया जाता है। भारत के गणितज्ञों में ब्रह्मगुप्त, भास्कराचार्य, वराहमिहिर, आर्यभट्ट का इस क्षेत्र में अतुलनीय योगदान रहा है।
यूक्लिड द्वारा ज्यामिति का संगठित विवेचन लगभग 1800 A. D. तक व्यापक रूप से स्वीकार किया जाता है यह बीजगणित के अत्यन्त धीमे विकास के कारण हुआ। लगभग 1600 A. D. के आसपास बीजगणित का स्वरूप संक्षिप्त भाषा के रूप में प्रारम्भ हुआ जिसके द्वारा कठिन एवं पेचीदा सम्बन्धों को बीजगणित की भाषा में लिखना सम्भव हुआ। इसी काल में विश्लेषिक ज्यामिति (Analytic Geometry) की खोज हुई जिससे परम्परागत ज्यामिति की समस्याओं को यांत्रिक तरीके से समस्याओं में प्रकट किया जा सका।
यूनान के लोगों ने सर्वप्रथम निगमनात्मक चिंतन से, सुस्पष्ट तथ्यों के आधार पर, प्रमेयों को सिद्ध किया। फिर भी उन्नीसवीं शताब्दी के आरम्भ तक लोगों ने इस प्रणाली को तर्कसंगत आधार प्रदान करने में सफलता प्राप्त नहीं की।
अब आधुनिक गणित में तर्क के आधार पर संरचनाओं का निर्माण किया जाता है जिससे यह स्पष्ट है कि अभिगृहितों से विभिन्न नियमों को निष्पादित किया जा सकता है तथा इससे समझने की शक्ति का विकास होता है।
इस आर्टिकल में इसी के बारे में बताया गया है, इसे पूरा पढ़ें और यदि आर्टिकल अच्छा लगे तो इसे अपने मित्रों, दोस्तों के साथ शेयर कीजिए।
|
a² - b² गणित में सर्वव्यापी है और यह बीजगणित के लिए सुपरक्लिफ्रेगिलिस्टिसएक्सपायलीडोसियस भी है।
यदि हम बीजगणितीय रूप से बोलते हैं:
(a + b) (a - b) = a² + ba - ab -b²= a² - b²
लेकिन a² - b²का प्रतिनिधित्व करने के लिए एक अलग और सुंदर तरीका है। हम इस एकल अवधारणा के कई निरूपण कर सकते हैं। यह गणित की सुंदरता है। उदाहरण के लिए, ज्यामितीय वस्तुएं बीजीय सूत्रों और समीकरणों की कल्पना करने के लिए बहुत शक्तिशाली हैं।
*** बीजगणित के ज्यामितीय सिद्धों के बारे में एक सुंदर किताब है जिसे कहा जाता है: द एलिमेंट्स ऑफ यूक्लिड। आप इसे प्यार करेंगे अगर आपके पास है!
आइए इसके बारे में ज्यामितीय रूप से थोड़ा विचार करें।
नीचे के इस नीले आकार में a² - b²का एक क्षेत्र है। और हम एक बीजीय पहचान को फिर से व्यवस्थित करके प्रकट कर सकते हैं।
ऐसा करने के लिए, पहले हम एक कट बनाते हैं और आकृति को दो अलग-अलग आयतों में विभाजित करते हैं; नीला एक और पीला एक। नीली आयत की ऊँचाई अब (a - b) है, और हरे आयत की ऊँचाई स्पष्ट रूप से b है।
|
(a + b) (a - b)।
|
|
कभी-कभी ज्यामितीय रूप से बीजगणित की समस्या का प्रतिनिधित्व करने के दिलचस्प परिणाम हो सकते हैं!